Nuclear Waste                                                  Return


There have been proposals for reactors that consume nuclear waste and transmute it to other, less-harmful nuclear waste. In particular, the Integral Fast Reactor was a proposed nuclear reactor with a nuclear fuel cycle that produced no transuranic waste and in fact, could consume transuranic waste. It proceeded as far as large-scale tests but was then canceled by the U.S. Government. Another approach, considered safer but requiring more development, is to dedicate subcritical reactors to the transmutation of the left-over transuranic elements.

Despite transmutation being banned in the US since 1977 because of the danger of plutonium proliferation [16], in the EU progress has continued. This has resulted in a practical nuclear research reactor in which transmutation is possible. This nuclear reactor is called Myrrha. Also, in the EU, a new research program called ACTINET has been started to make transmutation possible on a large, industrial scale.

There have also been theoretical studies involving the use of fusion reactors as so called "actinide burners" where a fusion reactor plasma such as in a tokamak, could be "doped" with a small amount of the "minor" transuranic atoms which would be transmuted (meaning fissioned in the actinide case) to lighter elements upon their successive bombardment by the very high energy neutrons produced by the fusion of deuterium and tritium in the reactor. It was recently found by a study done at MIT, that only 2 or 3 fusion reactors with parameters similar to that of the International Thermonuclear Experimental Reactor (ITER) could transmute the entire annual minor actinide production from all of the light water reactors presently operating in the United States fleet while simultaneously generating approximately 1 gigawatt of power from each reactor[8].